[image: image8.png]g
1« DOTNETNUKE

[image: image9.png]aéDDTN&TNUK&

ommunity ° llaborat

Y

Store Templating Guide
A practical guide to design the Store module

Gilles Le Pigocher

Revision 1.0.12
Last Updated: December 26, 2010
Applies to: Store 02.01.46 and above

Information in this document, including URL and other Internet Website references, is subject to change without notice. The entire risk of the use or the results of the use of this document remains with the user.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, places, or events is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of DotNetNuke Corporation. DotNetNuke Corporation may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from DotNetNuke Corporation, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2010 DotNetNuke Corporation. All rights reserved.

DotNetNuke® and the DotNetNuke logo are either registered trademarks or trademarks of DotNetNuke Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Abstract
This guide is aimed at web designers who want to leverage the powerful architecture of the Store module to design an ecommerce/web store. It explains how to use the settings, templates, tokens, cascading style sheets and skin objects in non-technical terms.

Contents
1Chapter 1: Getting Started

2Chapter 2: Setting Up Portal Templates

5Chapter 3: Templates Hierarchy

10Chapter 4: Understanding the Cascading Style Sheets

12Chapter 5: Optimizing product images

13Chapter 6: Using the Skin Objects

15Chapter 7: Using the Store Print Action

16Chapter 8: Email Order Templates

19Additional Information

20Appendix A: Templates Default Hierarchy

21Appendix B: Tokens List

30Appendix C: Skin Objects Attributes

32Appendix D: Email Tokens List

36Appendix E: Document History

Chapter 1: Getting Started

Introduction
The Store module can easily be personalized. The template system builds pages dynamically, with HTML templates containing tokens, and several cascading styles sheets. The default templates and style sheets are XHTML compliant. They have been tested with Internet Explorer 8 and Firefox 3.

Basically, the catalog which is read from the database is displayed using templates, while its presentation (type, colors and sizes) is defined in the style sheets.

A template is a file containing static HTML code, and dynamic tokens which retrieve certain content from the database: for example, the products description or properties.

The elegance of the Store module’s architecture is that templates can be embedded. This makes the design very flexible. You may for example design the products’ presentation once for all catalogs (main, new products, featured, etc); but alternatively you may design a different layout for every catalog view. This helps building your own library of reusable catalog templates, which you can use in other portals like a construction game.

Skin objects are small pieces of ready-to-use code that can easily be placed inside a skin by a designer without programming knowledge. You will learn to use them in chapter 6.

All labels and messages comply with the DotNetNuke localization standards. This provides translation capabilities to other languages. But it may also be used to change the texts and build your own ‘pack’, adjusting your text to the website’s audience.

To sum it up, Store offers web designers a powerful, flexible and reusable architecture, in the spirit of the DotNetNuke platform itself.
Chapter 2: Setting Up Portal Templates

Defining setting

By default, all portals share the same set of templates. But a user with admin rights can create specific templates per portal. It is recommended to work on your own templates set at the portal level, rather than change the main templates set, so you can keep the default design unchanged.
Because the DotNetNuke default allowable extensions are very restrictive, you have to authorize the following file extensions in the Host Settings: htm and psd. Those steps allow you to manage your template files (*.htm) and to download the Photoshop template button (Buttons.psd) using the DotNetNuke File Manager. Login as SuperUser (host account) and go to Host > Settings. At the bottom of the settings page, expand “Other Settings” and enter both extensions in the “Allowable File Extensions” text box (values must be comma separated) then update settings.
Go to the Store Admin module and check if the Portal Templates setting is enabled:
[image: image1.emf]

When the Portal Templates setting is checked and the settings saved, the Store Admin module performs a number of tests:

If the default portal folder (e.g.: ...\Portals\n\) does not contain a Store subfolder, then this subfolder is created and template files are copied into the \Templates subfolder (e.g.: ...\Portals\n\Store\Templates\).

If the \Store folder already exists, the templates are not copied to preserve your existing templates.

Accessing template files

The easy way to personalize your Store is to access to the main DotNetNuke installation folder. In this case, you can open the website with Visual Studio. You will be able to read/write files in the portal folder and in the current skin folder if you want to use the Store SkinObjects.

If you can access the portal folder by FTP, you could modify/adapt the HTML templates and Cascading Style Sheets with your favorite editor. At the minimum, you need to be a member of the DotNetNuke Admin group, so you can download/upload files with the standard DotNetNuke files utility.

[image: image2.emf]

Updating your templates to the last Store version
When the Store module is updated, the \Store subfolder at the portal level keeps the current version of the templates set! Only the templates in the folder ...\DesktopModules\Store\Templates are updated. This is the reason why you should NOT modify the templates located in this folder.

Because the full set was completely redesigned in version 02.01.17 released in September 2009 to be XHTML compliant, you should use the latest templates set and modify them if needed.

 If you can access the ...\DesktopModules\ folder, create a backup of the subfolder ...\Portals\n\Store\Templates\ and then copy the content of the folder ...\DesktopModules\Store\Templates inside. Then, copy any specific pieces of code that were written in your saved legacy templates, and paste/adapt them to the new XHTML templates.

 Alternatively, uncheck the Portal Templates setting and save settings. Then rename the ...\Portals\n\Store subfolder. Check back the Portal Templates setting and save settings. This time the original template set is copied because the Store subfolder does not exist any more. Go get the former code in you renamed subfolder and paste it into the new one.

A number of style sheets used with previous versions of the Store module are no longer required and can be deleted if you do not use their CSS classes in your templates. These files are: Cart.css, FontStyles.css, Common.css and MiniCart.css. Please read the chapter 4 for more information about the style sheets.
Chapter 3: Templates Hierarchy

Templates are embedded like Russian puppets, but a template can contain several sub-level templates.

A template is made of HTML element tags, and tokens. HTML is static, while tokens are dynamically replaced by some content. By convention, all token names are in upper case, but the Store template engine is not case sensitive.

There are three template levels:

First level: The Main template

The default main template file is Catalog.htm, but you may use any other name. You can create a different template and select his file name in the General Settings section of the Store Catalog module settings.

One of the scenarios we could imagine would be to prepare specific catalogs ready for use at a certain periods of the year. Changing the catalog design would only require to set the corresponding name in the settings on the correct date.

[image: image3.emf]

The main template should contain a block-level element (div) containing eight tokens ([SEARCH], [SEARCHRESULTS], [MESSAGE], [DETAIL], [CATEGORY], [FEATURED], [NEW] and [POPULAR]). Each token is related to a part of the Store Catalog module interface and can be enabled / disabled via the General Settings section without modifying the template.

[SEARCH] is used to display a group of controls to allow your visitors to search in the catalog, while [SEARCHRESULTS] displays products found using the SearchResultsContainer.htm template by default. When products are displayed, the category message and the category product list are hidden. The texts of the controls are stored inside the Catalog.ascx resource file.
[MESSAGE] displays the message field content of the selected category and sub-categories (if any).
[CATEGORY], [FEATURED], [NEW], and [POPULAR] are containers for related list of products.
[DETAIL] displays the product detail view.
While [MESSAGE] can only contain the category’s message field, all others are dynamically replaced by sub-level templates, which can themselves contain HTML and tokens.

Each product list is controlled by two templates: a container, and a product item template which replicates the product pattern.
Appendix A is a detailed list of template levels, displayed as a numbered list.

Appendix B contains a comprehensive list of tokens, grouped by template type.

<div class="StoreCatalogWrapper">
 [SEARCH]
 [SEARCHRESULTS]
 [MESSAGE]
 [DETAIL]
 [CATEGORY]
 [FEATURED]
 [NEW]
 [POPULAR]
</div>

Second Level: Container templates
The second template level acts as a container for a list of products. Each kind of list can use a different container template. The setting ‘Container Template’ defines the container file to use to render the section.

Basically, a container template has two parts: a title, and a products list. A div element containing two other div used to build the corresponding part of the interface. The token [LISTTITLE] is used to inject a span element containing the list title. The texts of the titles are stored inside the Catalog.ascx resource file (CPTitle.Text, FPTitle.Text, NPTitle.Text and PPTitle.Text).

<div class="StoreListContainer">
 <div class="StoreListContainer-Title">[LISTTITLE]</div>
 <div class="StoreListContainer-Navigation"><p>[PAGEINFO]</p><p>[PAGENAV]</p></div>
 <div class="StoreListContainer-Content">[PRODUCTS]</div>
 <div class="StoreListContainer-Navigation"><p>[PAGEINFO]</p><p>[PAGENAV]</p></div>
</div>
While the token [PRODUCTS] injects a table element to render the products list. The use of a table element to render the list cannot be changed. This allows users with administration rights to control some simple settings such as the number of rows and columns or the filling direction without modifying the template file.
Note that using a table element to display products in rows and columns does not infringe the XHTML rules. It is – as a matter of fact – the best and most practical approach to the problem of properly displaying a content that is unknown at design time, and where all cells have a similar pattern. Alternatively, you can use the [ULISTPRODUCTS] token to render the product list as ul > li.
The column width can also be defined in settings. However if the value is greater than 0, it will be inserted to the corresponding cell in the table as an inline style attribute (style=”width: 280px”). For a better control display, you should set this value to 0 and use the corresponding CSS classes: td.StorePopularProductItem and td.StorePopularProductAlternatingItem.

Each cell contains a product item, which is rendered using another template that you can define in the List settings. In the example below, the part of the catalog for popular products will use a third level template for every product: PopularProduct.htm. Note that the second line of the settings below has been labeled ‘List Template’. It would probably have been better named ‘item template’, or ‘list item template’, but the important thing is to understand that this file defines the template for the item part of the corresponding list, and not for the list itself.

[image: image4.emf]

A practical consequence of this architecture is that you might perfectly have a different design for a product when it is displayed in the main catalog, or when it is displayed in a specific list such as the New Products or the Popular Products. As we have discussed before, you may also have an admin change the products display, if you provide them the corresponding templates in the listbox.

Two slightly different container templates are provided (ListContainer.htm and CategoryContainer.htm); because only the products list by category ([CATEGORY]) can use the tokens [CATEGORIESBREADCRUMB], [PAGENAV], [SELECTEDCATEGORY] and [SORTBY]. The texts for those tokens are defined in the resource file ProductList.ascx. For the other types of lists, since they cannot use the navigation system, the number of products to display is determined by the number of rows multiplied by the number of columns.
Third Level: Product Item templates

The third and last level of template is the product item. Each cell of the table which is generated by the product list renders its content using one of the eight product templates.

Templates are provided in two flavors (e.g.: NewProduct.htm and NewProduct_Small.htm) for each of the four kinds of products lists ('Category', 'Featured', 'New' and 'Popular').

ProductList.htm and ProductListFullInfo.htm are used for the products list by category because they are related to the ‘main’ product list.

[image: image5.emf]

There are 36 tokens that you can use with these templates. Most of them are related to the product attributes and some others are used as command image buttons or link buttons. Look at list in Appendix B for details about the tokens.

All texts used with labels and links generated by tokens are defined in the resource file ProductDetail.ascx. To facilitate the translation, the names of image buttons are also defined in this resource file (like addtocartimg_{0}.gif in AddToCartImg.Text) and the current language code (e.g.: en-US, fr-FR, ...) is added to the end, to build the full file name (addtocartimg_en-US.gif). You have to create your local version of image buttons to translate the Store module into a defined language. A Photoshop model (buttons.psd) is provided in the folder Images to help you create your own localized buttons.
Product Detail template

This template is not embedded into a parent template. It is used to display the product detail view.

When this section is displayed, the product list by category is hidden. All tokens that you can use for the product item template inside a list, can also be used in this template (and since this is a detailed page, it will probably make sense to use more of them here than in the catalog). Of course, there is no reason to use a token like [LINKDETAIL] or [LINKDETAILIMG] because the user is already on the detail page! The token [DETAILTITLE] can be used only inside a detail template because it displays the section title.
Two detail templates are provided, ProductDetail.htm is the default and it only uses a few tokens. ProductDetailFullInfo.htm is an alternate and more detailed version, using almost all available tokens. You may try it to have a look at all your products properties.

Advanced use of the tokens
This paragraph spotlights a specific use of the tokens, which is aimed at the .Net developer. If you are a designer with no programming knowledge, you can easily skip this, since most of what can be done here can also be obtained by regular style sheets.

Store tokens are a little bit different that most DNN tokens, although there usage is similar. Basically, some Store tokens have an underlying ASP.Net control, which may have properties. It is sometimes possible to set these properties using the syntax [TOKEN::property=value]. You can define several properties by separating each property by two colons.

For example, you can set the border width of the product image directly in the token [IMAGE::BorderWidth=1px]. Another common use is to override the built-in CSS class like this [IMAGE::CssClass=YourClassName].

‘BorderWith’ and ‘CssClass’ are neither HTML nor CSS syntax, but properties of the System.Web.UI.WebWontrols.Image control.

Also note that this feature is limited to certain types: Boolean, Color, CssStyleCollection, Int32, Unit and String.

For a number of reasons, we would recommend to use the CSS rather that the tokens properties whenever possible. In particular, some properties render as inline style and you should avoid this to be fully XHTML compliant.
Chapter 4: Understanding the Cascading Style Sheets

Main style sheet

When any one of the Store modules is loaded, it injects a link element that contains a reference to the main style sheet (Template.css) in the page header element. The default main style sheet is optimized for production website. Because an optimized style sheet can’t be modified easily, an alternate version is provided. The alternate style sheet for web designer (TemplateDesign.css) contains three import directives to load style sheets related to different parts of the interface (StoreFront.css, StoreAccount.css and SkinObjects.css).

/*****************/
/* Nested Import */
/*****************/
@import url("./StyleSheet/StoreFront.css");
@import url("./StyleSheet/StoreAccount.css");
@import url("./StyleSheet/SkinObjects.css");

By convention, class names are always prefixed with the word Store and the type of the element to form the selector. Thus the selector div.StoreMenuWrapper control rendering of a div element of class StoreMenuWrapper. Class names are fairly intuitive so that the web designer understands their use. Most of time, the type of element is not required thus the class selector could be shorten as .StoreMenuWrapper.

Only Template.css is optimized, all other style sheets provided are not optimized for production websites. You should use tools such as Yahoo YUI Compressor, Minify CSS, CSS Optimizer or Clean CSS to reduce their size and optimize the code. There are plenty of similar tools available on the net; makeuseof.com website offers an article about 11 products to optimize style sheets, while the bloggingpro.com site has made a comparison of several optimizers.
Older browsers do not recognize the Import directive and then do not render correctly the Store interface. If you need to be compatible with the widest possible audience, delete the four imports, then copy and paste the content of each CSS files to the main style sheet file. However, as most browsers support current standards, you should not need to apply these changes.
The StoreFront.css style sheet

The StoreFront.css style sheet contains the definitions of CSS classes for the store interface. The Store Menu, Store Catalog and Store MiniCart modules are the primary interface on your online store. This is why the related classes are grouped in one style sheet. The classes related to each module are grouped together and delimited by comments.

The StoreAccount.css style sheet

The Store Account module is fairly complex. It dynamically loads several controls within the context. There are five options in the top menu. The ‘Store’ option simply redirects to the Store page defined in the Store Admin module. ‘My Cart’ is the default option; it loads the cart and checks if the user is logged in. At checkout several other controls are loaded to build the interface (Addresses selector, Cart and Payment provider).
The ‘Addresses’ option allows the user to manage their addresses. While the ‘Order History’ option is used to manage orders. At last, the ‘Download’ option allows access to virtual products purchased. That is why this style sheet is quite large.
Considering than several payment gateways are provided by default, required classes for each gateway are present in this style sheet. You can further reduce the weight of the style sheet by removing unused classes.

The SkinObjects.css Style Sheet

This style sheet is the smallest one. It only contains the classes relating to skin objects. Chapter 6 provides more information about the skin objects.
Chapter 5: Optimizing product images

Image formats and locations

Five standard bitmap file formats can be used for products images (BMP, GIF, JPEG, PNG, and TIF). They can be stored anywhere in the portal subfolder (e.g.: ...\Portals\n\).
The PGN transparency is fully supported (PGN-8 and PNG-24). We recommend using PNG-8 for wider compatibility, included Internet Explorer 6. Because the .Net Framework does not support natively the GIF transparency, you have to define the ‘GIF Background’ setting if you want to use GIF images with transparency.
You might want to facilitate their management by grouping them into subfolders by category, and use the product model number as a basis for their file name (e.g.: ...\Portals\n\StoreProductImages\CategoryName\P2731.png). You could also use external image files, but your DotNetNuke instance may require the full trust level. Check out Microsoft MSDN website for more information about trust levels. For security reasons, some hosting plans do not allow to operate in this mode.

Thumbnail settings

Three settings control the thumbnail display for each product section. The Show Thumbnails setting allows you to turn on/off the thumbnail display without changing the associated template. Thumbnails are created dynamically based on the size specified in the Thumbnail Width setting. Although source images can theoretically be of any size, it is better to reduce their width to the maximum size specified in the Thumbnail Width setting. To do this, you can use any photo editing tool. This can reduce the image processing time and therefore alleviate the server workload. Similarly, the weight of the pictures should also be optimized. Depending on the quality of the source, you can reduce several MB to a few KB, save bandwidth, time and disk space. By default, all generated thumbnails are cached during 2 minutes. They are two settings in the Store Catalog general settings used to enable or disable the cache and the duration. If you use GIF images with transparency, set the ‘GIF Background’ setting with the hex value of the background color of your template. The default background color is white (FFF).
[image: image6.emf]

Chapter 6: Using the Skin Objects

Installation

From the version 02.01.43, the skin objects are installed with the Store module. For previous versions, you have to download the optional skin object package Store_02.01.xx_SkinObjects_Install.zip and install it like any other module (Host > Module Definitions) before you can use the skin objects. Refer to Appendix C for a list of available skin objects attributes.

Editing the skin

If you are not familiar with the skinning concept, please read the official DotNetNuke Skinning documentation. Skin objects can’t be used as tokens in templates; you have to edit your skin to use them. If you create your skin using ascx file, insert the following lines at the top of file to register both skin objects:
<%@ Register TagPrefix="dnn" TagName="STORELINKS" Src="~/DesktopModules/Store/SkinObjects/Links.ascx" %>
<%@ Register TagPrefix="dnn" TagName="STOREMICROCART" Src="~/DesktopModules/Store/SkinObjects/MicroCart.ascx" %>

Insert into your skin the following lines, where you want the StoreLinks and the StoreMicroCart respectively:
<dnn:STORELINKS runat="server" id="dnnStoreLinks" LinkAction="cart" ImageName="cart_go.png" TextVisible="true"/>
<dnn:STOREMICROCART runat="server" id="dnnStoreMicroCart" />

Setting the StoreLinks skin object

The StoreLinks skin object provides an easy navigation to the cart page or to the store page. This skin object is rendered as a span, containing a command button icon, followed by a link to the cart page by default. To use a different cart image file, upload your file to the folder ...\Portals\n\Store\Templates\Images and specify its name to the ImageName attribute. Two sets of cart images from the FamFamFam collection are provided in the Images subfolder.

To link to the store page, replace the default “Cart” LinkAction attribute value to “Store”.

The texts used for the text link (“View Cart” and “View Store”) can be changed in the resource file Links.ascx. If you don’t want to display the text link, define the TextVisible attribute to “false”.

Why use the StoreMicroCart?

The StoreMicroCart skin object provides an alternative cart view, as a replacement for the Store MiniCart module. The module gives a detailed view of the cart content, and lets the user specify the product quantities they wants for every product. But as these exact same features are available at checkout, the web designer may rather use a smaller version of the cart. Another advantage is the possibility to display the content of the cart on several or all pages of the site. Just insert the StoreMicroCart skin object in the skin of these pages.

Just like the module, the micro cart can display the total amount including VAT. To do this, set the IncludeVAT attribute to “true”.

The StoreMicroCart skin object is rendered as a div element containing two p elements. The first paragraph contains two spans to render the label “Your cart:” and the number of products in your cart “n product(s)”. The second paragraph contains two other span elements to render the cart total amount. All labels can be modified in the resource file MicroCart.ascx.

<div id="divStoreMicroCart" class="StoreMicroCart">
 <p id="pStoreMicroCartItems" class="StoreMicroCartItems">
 Your cart:

 0 product(s)
 </p>
 <p id="pStoreMicroCartTotal" class="StoreMicroCartTotal">
 Total:

 €0.00
 </p>
</div>
[image: image7.emf]

Chapter 7: Using the Store Print Action

Search Engine Optimization covers all techniques to increase your website ranking score. The Store module provides several features for a better referencing such as replacing the page title and Meta tags 'on the fly' depending on the context. An important rule is to never provide the same content for two or more different URLs. Because you can define a default category to display in the Store Catalog module, at loading if the CategoryID is not provided in the URL, the module redirects to the same page with the default category ID inserted in the URL.
The main drawback is than the standard print module button does not support redirect; as a result the Store Catalog content is not displayed correctly. To workaround this limitation, the store print action has been added. It acts exactly like the standard print button and you have to add it to your skin container to be able to use it. If you create your skins using the HTML way, use the StorePrint.Action keyword instead the standard PrintModule.Action. Moreover, you have to enable the ‘Allow Print?’ setting in the Store Catalog module settings. When enabled, the standard ‘Allow Print?’ setting is disabled automatically to avoid the display of both buttons.
Alternatively, you can use the [PRINTDETAIL] token in the product detail template. In this case you do not have to modify your skin container. If you choose to use the token, you should not enable the standard ‘Allow Print?’ setting.
Adding the Store Print Action to the ascx skin container file

Open the ascx file corresponding to the container used with the Store Catalog module and register the Store Print Action as in the sample below:

<%@ Register TagPrefix="dnn" TagName="ACTIONBUTTON6" Src="~/Admin/Containers/ActionButton.ascx" %>

Add to following line where you want to display the print button:

<dnn:ACTIONBUTTON6 runat="server" id="dnnACTIONBUTTON6" CommandName="StorePrint.Action" DisplayIcon="True" DisplayLink="False" />
Don’t forget to use a unique TagName (ACTIONBUTTON6 in this sample).
Chapter 8: Email Order Templates

Templates architecture

From version 02.01.41 email templates system has been completely rebuilt. Email templates are located in the resource files of each gateway provider to allow different text depending on the payment system used. Moreover, the use of resource files allows translating the templates. Two templates are available for each stage (Order Confirmation and Order Status Changed), the first is the email sent to the customer, while the second is sent to the administrator of the store. Finally, each template is made of two resources, one for the email subject and another one for the email body.
Accessing resource files
Login to your website as host or admin, then select Admin > Languages. In the array of cultures, the right-hand column ‘Static Resources’ contains three pencils ‘System’, ‘Host’ and ‘Site’ for each culture. Click on the ‘System’ pencil for the desired culture row to edit. On the Language Editor page, expand the tree in the left column ‘Resources’: Local Resources > DesktopModules > Store > Providers > GatewayProviders > providernameProvider, where providername is the gateway provider name used by your store. By default, three providers are available: AuthorizeNetProvider, EmailProvider and PayPalProvider. Each provider has an App_LocalResources folder containing two files: providernameAdmin.ascx and providernamePayment.ascx. Order templates are located in the file providenamePayment.ascx. In this guide we will look at the Email provider templates only, but the process is the same whatever the used provider.
Modifying the Email templates

When EmailPayment.ascx is selected, the right part of the Language Editor display resources contained in the file. By default, all templates use the basic text format. Alternatively, you can use the HTML format to improve the appearance of your emails. Because the Language Editor is a simple text editor, it may be more comfortable to use an HTML editor for formatting your templates.
Email templates use the same kind of tokens than you can use with the HTML/Text module. They are represented in the form [Object:Property]. Five objects can be used in email body templates: Store, Order, OrderDetail, BillingAddress and ShippingAddress, while only Store and Order objects can be used in email subject templates. Appendix D contains the full list of available properties grouped by object.
The following resources are used to send emails to the customer and the store administrator:
· On Order Confirmation:
· To the customer:

· CustomerOrderEmailSubject.Text

· CustomerOrderEmailBody.Text

· To the store administrator:

· AdminOrderEmailSubject.Text

· AdminOrderEmailBody.Text

· On Order Status Changed:

· To the customer:
· CustomerStatusChangedEmailSubject.Text

· CustomerStatusChangedEmailBody.Text

· To the store administrator:

· AdminStatusChangedEmailSubject.Text

· AdminStatusChangedEmailBody.Text

The resource OrderDateFormat.Text allows you to control the date and time formatting. You can use Standard Date and Time Format Strings and Custom Date and Time Format Strings supported by the framework .Net.
Default Customer email template
CustomerOrderEmailSubject.Text
[Store:Name] - Confirmation of your Order #[Order:OrderID]
CustomerOrderEmailBody.Text
In the body template, two special tokens [DETAIL] and [/DETAIL] are used to delimit the order detail template row. The content is repeated for each product purchased.

Thank you for placing an order with [Store:Name].

Please find below your order number and a summary of your order. If you have created an account, you can check the status of your order at any time by logging into our site and clicking the [Store:ShoppingCartPageName] link. If you have any questions about your order, please feel free to contact us at [Store:Email], or simply reply to this message.

Order Number: [Order:OrderID] - Order Date: [Order:OrderDate]

Order Contents

[DETAILS]
[OrderDetail:ProductTitle] x [OrderDetail:Quantity] @ [OrderDetail:ExtendedAmount]
[/DETAILS]

Sub-Total: [Order:OrderTotal]
Shipping & Handling: [Order:ShippingCost]
Tax: [Order:TaxTotal]
Total: [Order:GrandTotal]

Billing Address:
[BillingAddress:FirstName] [BillingAddress:LastName]
[BillingAddress:Address1]
[BillingAddress:Address2]
[BillingAddress:PostalCode]
[BillingAddress:City]
[BillingAddress:Region]
[BillingAddress:Country]

Shipping To:
[ShippingAddress:FirstName] [ShippingAddress:LastName]
[ShippingAddress:Address1]
[ShippingAddress:Address2]
[ShippingAddress:PostalCode] [ShippingAddress:City]
[ShippingAddress:Region]
[ShippingAddress:Country]

This invoice is subject to our terms of use.

If, for whatever reason, your order cannot be processed, then one of our customer services representatives will contact you shortly.

Once again, thank you for your order.
Additional Information

The DotNetNuke Web Content Management Platform is constantly being revised and improved. To ensure that you have the most recent version of the software and this document, please visit the DotNetNuke website at:

http://www.dotnetnuke.com
The following additional websites provide helpful information about technologies and concepts related to DotNetNuke:

DotNetNuke Community Forums
http://www.dotnetnuke.com/tabid/795/default.aspx
DotNetNuke Store Forum
http://www.dotnetnuke.com/Resources/Forums/tabid/795/forumid/114/scope/threads/Default.aspx
Microsoft® ASP.Net
http://www.asp.net
Open Source
http://www.opensource.org/
W3C XHTML 1.0
http://www.w3.org/TR/xhtml1/
W3C Cascading Style Sheets, level 1
http://www.w3.org/TR/CSS1

Errors and Omissions

If you discover any errors or omissions in this document, please email marketing@dotnetnuke.com. Please provide the title of the document, the page number of the error and the corrected content along with any additional information that will help us in correcting the error.

Appendix A: Templates Default Hierarchy

1. Catalog.htm - div.StoreCatalogWrapper

1.1. [MESSAGE] - div.StoreMessage

1.1.1. p.StoreCategoryMessage

1.1.2. p.StoreSubCategories

1.2. [DETAIL] - ProductDetail.htm - div.StoreDetailContainer

1.2.1. div.StoreDetailContainer-Title

1.2.2. div.StoreDetailContainer-Content

1.3. [CATEGORY] - CategoryContainer.htm - div.StoreListContainer

1.3.1. div.StoreListContainer-Title

1.3.1.1. [LISTTITLE] - span.StoreListTitle

1.3.2. div.StoreListContainer-Breadcrumb
1.3.2.1. p

1.3.2.1.1. [CATEGORIESBREADCRUMB] - span.StoreCategoriesBreadcrumb
1.3.3. div.StoreListContainer-SortBy
1.3.3.1. p
1.3.3.1.1. [SELECTEDCATEGORY] - span.StoreSelectedCategory, [ITEMSCOUNT] - span.StoreItemsCount, [SORTBY] - span.StoreSortBy
1.3.4. div.StoreListContainer-Content

1.3.4.1. [PRODUCTS] - table.StoreCategoryProductList

1.3.4.1.1. td.StoreCategoryProductItem - ProductList.htm
1.3.4.1.2. td.StoreCategoryProductAlternatingItem - ProductList.htm
1.3.5. div.StoreListContainer-Navigation

1.3.5.1. p

1.3.5.1.1. [PAGEINFO] - span.StorePageInfo

1.3.5.2. p

1.3.5.2.1. [PAGENAV] - span.StorePageNav

1.4. [FEATURED] - ListContainer.htm - div.StoreListContainer

1.4.1. div.StoreListContainer-Title

1.4.1.1. [LISTTITLE] - span.StoreListTitle

1.4.2. div.StoreListContainer-Content

1.4.2.1. [PRODUCTS] - table.StoreFeaturedProductList

1.4.2.1.1. td.StoreFeaturedProductItem - FeaturedProduct.htm
1.4.2.1.2. td.StoreFeaturedProductAlternatingItem - FeaturedProduct.htm
1.5. [NEW] - ListContainer.htm - div.StoreListContainer

1.5.1. div.StoreListContainer-Title

1.5.1.1. [LISTTITLE] - span.StoreListTitle

1.5.2. div.StoreListContainer-Content

1.5.2.1. [PRODUCTS] - table.StoreNewProductList

1.5.2.1.1. td.StoreNewProductItem - NewProduct.htm
1.5.2.1.2. td.StoreNewProductAlternatingItem - NewProduct.htm
1.6. [POPULAR] - ListContainer.htm - div.StoreListContainer

1.6.1. div.StoreListContainer-Title

1.6.1.1. [LISTTITLE] - span.StoreListTitle

1.6.2. div.StoreListContainer-Content

1.6.2.1. [PRODUCTS] - table.StoreNewProductList

1.6.2.1.1. td.StoreNewProductItem - PopularProduct.htm
1.6.2.1.2. td.StoreNewProductAlternatingItem - PopularProduct.htm
Legend :

BLACK BOLD : Tokens ([MESSAGE], [DETAIL], ...)

Green italics : User defined HTML templates file name (Catalog.htm, ...)

Green normal : User defined tag.CSSClassName (div.StoreCatalogWrapper, ...)

Red normal : Code defined tag.CSSClassName (div.StoreMessage, ...)
Appendix B: Tokens List

Main Template

	Token
	Description

	[CATEGORY]
	Loads the selected template (CategoryContainer.htm by default) to display the products list by category.

	[DETAIL]
	Loads the selected template (ProductDetail.htm by default) to display the product detail view.

	[FEATURED]
	Loads the selected template (ListContainer.htm by default) to display the list of featured products.

	[MESSAGE]
	Displays the message attribute content of the selected category and subcategories (if any).

	[NEW]
	Loads the selected template (ListContainer.htm by default) to display the list of new products.

	[POPULAR]
	Loads the selected template (ListContainer.htm by default) to display the list of popular products.

	[SEARCH]
	Display a group of controls to search in the catalog. The texts can be changed in the resource file Catalog.ascx.

	[SEARCHRESULTS]
	Loads the selected template (SearchResultsList.htm by default) to display the list of products found.

Container Template

	Token
	Description

	[CATEGORIESBREADCRUMB]
	Displays the list of categories from the root to the selected category. The text labels can be changed in the resources BeforeCategoriesBreadcrumb.Text, BetweenCategoriesBreadcrumb.Text and AfterCategoriesBreadcrumb.Text in the file ProductList.ascx. This token can be used only within a container to display the products list by category.

	[ITEMSCOUNT]
	Displays the number of items in the list (e.g.: 5 item(s)). The text label can be changed in the resource Items.Text in the file ProductList.ascx.

	[LISTTITLE]
	Displays the title of the corresponding list. The text labels can be changed in the resources CPTitle.Text, FPTitle.Text, NPTitle.Text and PPTitle.Text in the file Catalog.ascx.

	[PAGEINFO]
	Displays the current page number and the number of pages (e.g.: Page 1 of 3). The text label can be changed in the resource PageInfo.Text in the file ProductList.ascx.

	[PAGENAV]
	Displays the page navigation system (e.g.: << 1 2 3 >>). The text links can be changed in the resources Next.Text and Previous.Text in the file ProductList.ascx. This token can be used only within a container to display the products list by category.

	[PRODUCTS]
	Loads the selected template to display the products belonging to the list. The list is rendered as a table.

	[SELECTEDCATEGORY]
	Displays the currently selected category name. The text label can be changed in the resource Items.Text in the file ProductList.ascx. This token can be used only within a container to display the products list by category.

	[SORTBY]
	Displays the label “Sort by:” followed by a drop down list and an image button. Those controls allow the user to select the column to sort on and to switch the sort order to ascending or descending. The text label can be changed in the resource SortBy.Text in the file ProductList.ascx. This token can be used only within a container to display the products list by category or a search result.

	[ULISTPRODUCTS]
	Loads the selected template to display the products belonging to the list. The list is rendered as ul >li.

Product Item and Detail Template

	Token
	Description

	[ADDQUANTITY]
	Displays the label “Quantity:”, followed by a text box to enter the desired quantity. The text label can be changed in the resource Quantity.Text in the file ProductDetail.ascx.

	[ADDTOCART]
	Displays a link button to add the chosen quantity for the selected product to the cart. The text link “Add to cart” can be changed in the resource AddToCart.Text in the file ProductDetail.ascx. Some Store Admin module settings may disable the display of this token in certain circumstances.

	[ADDTOCARTIMG]
	Displays an image button to add the chosen quantity for the selected product to the cart. Some Store Admin module settings may disable the display of this token in certain circumstances.

	[CARTWARNING]
	Displays a warning text above the product details when the product is already in the cart. This token can be used only within a detail template.

	[CATEGORYNAME]
	Displays a label containing the category name of the product.

	[DESCRIPTION]
	Displays a label containing the description of the product.

	[DETAILTITLE]
	Displays a label containing the section title. The text label can be changed in the resource DetailTilte.Text in the file ProductDetail.ascx. This token can be used only within a detail template.

	[DIMENSIONS]
	Displays a label containing the dimensions of the product (e.g.: Dimensions: H=0.00, L=0.00, W=0.00). The text model can be changed in the resource DimensionsText.Text in the file ProductDetail.ascx.

	[EDIT]
	Displays a pencil icon to edit the product if the current user has administration rights. The tooltip text can be changed in the resource Edit.Text in the file ProductDetail.ascx.

	[HEIGHT]
	Displays a label containing the height of the product (e.g.: Height: n m). The text model and the unit used (m) can be changed in the resource HeightText.Text from the file ProductDetail.ascx.

	[IMAGE]
	Displays the product image if the Thumbnail setting is checked. The alternate text (Product Image) can be changed in the resource ImageAlt.Text in the file ProductDetail.ascx.

	[IMAGESBASEURL]
	Returns the relative URL of the "Images" templates subfolder (e.g.: /Portals/n/Store/Templates/Images/). This allows you to use some background images or graphic elements without hard coding their path. By the way you can easily reuse templates across websites.

	[IMAGEURL]
	Returns the relative URL of the product image.

	[LENGTH]
	Displays a label containing the length of the product (e.g.: Length: n m). The text model and the unit used (m) can be changed in the resource LengthText.Text from the file ProductDetail.ascx.

	[LINKDETAIL]
	Displays a link to show the product detail. The text link “More Info” can be changed in the resource LinkDetail.Text in the file ProductDetail.ascx.

	[LINKDETAILIMG]
	Displays an image button to show the product detail. The file name and locale pattern (linkdetailimg_{0}.gif) can be changed in the resource LinkDetailImg.Text in the file ProductDetail.ascx.

	[LOCALE]
	Returns the current locale (e.g.: en-US, fr-FR, ...).

	[MANUFACTURER]
	Displays a label containing the manufacturer of the product.

	[MODELNAME]
	Displays a label containing the model name of the product.

	[MODELNUMBER]
	Displays a label containing the model number of the product.

	[PRICE]
	Displays a label containing the price of the product. By default, all prices are shown before taxes. The text label can be changed in the resource Price.Text in the file ProductDetail.ascx.

	[PRINTDETAIL]
	Displays a link to print the product detail. The text link “Print” can be changed in the resource PrintDetail.Text in the file ProductDetail.ascx.

	[PRODUCTDETAILURL]
	Returns the full URL of the product detail page.

	[PURCHASE]
	Displays a link button to add the chosen quantity for the selected product to the cart, then redirect to the Store Account page. The text link can be changed in the resource Purchase.Text in the file ProductDetail.ascx. Some Store Admin module settings may disable the display of this token in certain circumstances.

	[PURCHASEIMG]
	Displays an image button to add the chosen quantity of the selected product to the cart, then redirect to the Store Account page. Some Store Admin module settings may disable the display of this token in certain circumstances. The file name and locale pattern (purchaseimg_{0}.gif) can be changed in the resource PurchaseImg.Text in the file ProductDetail.ascx.

	[STOCKQUANTITY]
	Displays a label containing the quantity available of the product in stock (e.g.: Quantity available: n). The text label can be changed in the resource StockQuantity.Text in the file ProductDetail.ascx. The Store Admin module settings may change the display of this token when the product is out of stock. This token is NOT displayed when the setting ‘Inventory Management’ is unchecked in the Store Admin module.

	[SUMMARY]
	Displays a label containing the summary of the product.

	[SURFACE]
	Computes the surface of the product (Width * Length) and displays a label containing the result (e.g.; Surface: n m2). The text model and the unit (m2) can be changed in the SurfaceText.Text resource of the ProductDetail.ascx file.

	[TELLAFRIEND]
	Returns a mailto link to the current page.

	[TELLAFRIENDIMG]
	Displays an image button enclosed in a mailto link to the current page.

	[TEMPLATESBASEURL]
	Returns the relative URL of the templates subfolder (e.g.: /Portals/n/Store/Templates/).

	[TITLE]
	Displays a label containing the title of the product. When used in a product list, the label is enclosed by an anchor pointing to the detail page. The title of the product is a property created by concatenation of the product number and the model name.

	[VATPRICE]
	Displays a label containing the product price ‘VAT included’. The text label can be changed in the resource VATPrice.Text in the file ProductDetail.ascx.

	[VOLUME]
	Computes the volume of the product (Width * Length * Height) and displays a label containing the result (e.g.; Volume: n m3). The text model and the unit (m3) can be changed in the VolumeText.Text resource of the ProductDetail.ascx file.

	[WEIGHT]
	Displays a label containing the weight of the product (e.g.: Weight: n kg). The text model and the unit (kg) can be changed in the WeightText.Text resource of the ProductDetail.ascx file.

	[WIDTH]
	Displays a label containing the width of the product (e.g.: Width: n m). The text model and the unit (m) can be changed in the WidthText.Text resource of the ProductDetail.ascx file.

Specials token pairs

Those tokens must be paired and can be used inside each template. They allow you to display a part of a template depending to connection state of the current user.
	Token
	Description

	[IFLOGGED] [/IFLOGGED]
	Displays the content between token pair if the current user is logged.

	[IFNOTLOGGED] [/IFNOTLOGGED]
	Displays the content between token pair if the current user is not logged.

Appendix C: Skin Objects Attributes

[STORELINKS] attributes
	Attribute
	Default
	Description

	ImageCssClass
	Normal
	The CSS class name for the image.

	ImageName
	cart.png
	The file name of the image. The image file must be located in the ...\Store\Templates\Images folder.

	LinkAction
	Cart
	Indicates the default action for the link. Can be set to « Store » or « Cart ». “Store” redirects to the store page, and “Cart” to the cart page, defined in the Store Admin module.

	TextCssClass
	Normal
	The CSS class name for the text link.

	TextVisible
	True
	Enables or disables the text link.

 [STOREMICROCART] attributes

	Attribute
	Default
	Description

	ItemsTitleCssClass
	Normal
	The CSS class name for the items title.

	ItemsCssClass
	Normal
	The CSS class name for the items.

	TotalTitleCssClass
	Normal
	The CSS class name for the total title.

	TotalCssClass
	Normal
	The CSS class name for the total.

	IncludeVAT
	False
	Displays the cart amount VAT included, if True.

Appendix D: Email Tokens List
Store object
	Token
	Description

	[Store:Name]
	Displays the store name.

	[Store:Description]
	Displays the store description.

	[Store:Email]
	Displays the store email.

	[Store:ShoppingCartPageName]
	Displays the page name where is placed the Store Account module. This page is one that is defined in the Store Admin settings.

	[Store:ShoppingCartPageLink]
	Displays a link to the page name where is placed the Store Account module. It can be used in conjunction with the [Store:ShoppingCartPageName] token to create an HTML anchor.

	[Store:CatalogPageName]
	Displays the page name where is placed the main Store Catalog module. This page is one that is defined in the Store Admin settings.

	[Store:CatalogPageLink]
	Displays a link to the page name where is placed the main Store Catalog module. It can be used in conjunction with the [Store:CatalogPageName] token to create an HTML anchor.

Order object
	Token
	Description

	[Order:OrderID]
	Displays the order unique identifier.

	[Order:OrderDate]
	Displays the order date. You can control the date formatting with the resource OrderDateFormat.Text.

	[Order:ShipDate]
	Displays the shipping date.

	[Order:OrderTotal]
	Displays the order total (tax excluded).

	[Order:GrandTotal]
	Displays the order grand total (tax included).

	[Order:TaxTotal]
	Displays the tax total.

	[Order:ShippingCost]
	Displays the shipping cost.

	[Order:Status]
	Displays the order status.

	[Order:CommentToCustomer]
	Displays the optional comment to customer entered by the store administrator when a new order status is defined. This token can be used only inside the resource CustomerStatusChangedEmailBody.Text.

OrderDetail object
	Token
	Description

	[OrderDetail:ModelNumber]
	Displays the product model number.

	[OrderDetail:ModelName]
	Displays the product model name.

	[OrderDetail:ProductTitle]
	Displays the product title which is the concatenation of the number and product model name.

	[OrderDetail:Quantity]
	Displays the quantity of product purchased.

	[OrderDetail:UnitCost]
	Displays the product’s unit cost.

	[OrderDetail:ExtendedAmount]
	Displays the extended amount which is computed by multiplying the unit cost and the quantity.

BillingAddress and ShippingAddress object
In the table bellow only tokens for the BillingAddress object are listed because the ShippingAddress object use the same properties.
	Token
	Description

	[BillingAddress:FirstName]
	Displays the customer’s first name.

	[BillingAddress:LastName]
	Displays the customer’s last name.

	[BillingAddress:Address1]
	Displays the first line of the address.

	[BillingAddress:Address2]
	Displays the second line of the address.

	[BillingAddress:PostalCode]
	Displays the postal code.

	[BillingAddress:City]
	Displays the city.

	[BillingAddress:Region]
	Displays the region.

	[BillingAddress:Country]
	Displays the country.

	[BillingAddress:Email]
	Displays the customer’s email.

	[BillingAddress:Phone1]
	Displays the first phone number.

	[BillingAddress:Phone2]
	Displays the second phone number.

Appendix E: Document History

	Version
	Last Update
	Author(s)
	Changes

	1.0.0
	August 24, 2009
	Gilles Le Pigocher
	Creation

	1.0.1
	September 20, 2009
	Robert J Collins
	Editor Review

	1.0.2
	September 21, 2009
	Gilles Le Pigocher
	Added new tokens related to the version 02.01.19

	1.0.3
	October 28, 2009
	Gilles Le Pigocher
	Added new paragraph related to the allowable file extensions in the Chapter 2

	1.0.4
	November 5, 2009
	Gilles Le Pigocher
	Completed paragraph related to the GIF file format in the Chapter 5

	1.0.5
	January 17, 2010
	Gilles Le Pigocher
	Added new tokens related to the version 02.01.29

	1.0.6
	April 21, 2010
	Gilles Le Pigocher
	Some complementary explanations added.

	1.0.7
	April 24, 2010
	Gilles Le Pigocher
	Added new token pairs related to the version 02.01.33

	1.0.8
	May 19, 2010
	Gilles Le Pigocher
	Added new token [PRINTDETAIL] related to the version 02.01.35. Added chapter 7 about the Store Print Action.

	1.0.9
	September 4, 2010
	Gilles Le Pigocher
	Updated [STOCKQUANTITY] token related to the version 02.01.37.

	1.0.10
	November 10, 2010
	Gilles Le Pigocher
	Added new tokens [TELLTOAFRIEND] and [TELLTOAFRIENDIMG] related to the version 02.01.42. Added Chapter 8 about the Email Order Templates and Appendix D (email tokens list).

	1.0.11
	November 15, 2010
	Gilles Le Pigocher
	Added new token [CARTWARNING] related to the version 02.01.42.

	1.0.12
	December 26, 2010
	Gilles Le Pigocher
	Added token [ULISTPRODUCTS] related to the version 02.01.37. Corrected some information about style sheets.

Copyright © 2003-2010 DotNetNuke Corporation. All Rights Reserved.

